Reciprocal relations between cyclotomic fields

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reciprocal cyclotomic polynomials

Let Ψn(x) be the monic polynomial having precisely all non-primitive nth roots of unity as its simple zeros. One has Ψn(x) = (x n − 1)/Φn(x), with Φn(x) the nth cyclotomic polynomial. The coefficients of Ψn(x) are integers that like the coefficients of Φn(x) tend to be surprisingly small in absolute value, e.g. for n < 561 all coefficients of Ψn(x) are ≤ 1 in absolute value. We establish variou...

متن کامل

Reciprocal relations between kinetic curves

We study coupled irreversible processes. For linear or linearized kinetics with microreversibility, ẋ=Kx, the kinetic operator K is symmetric in the entropic inner product. This form of Onsager’s reciprocal relations implies that the shift in time, exp(Kt), is also a symmetric operator. This generates the reciprocity relations between the kinetic curves. For example, for the Master equation, if...

متن کامل

Cyclotomic Fields

Cyclotomic fields are an interesting laboratory for algebraic number theory because they are connected to fundamental problems Fermat’s Last Theorem for example and also have relatively simple algebraic properties that makes them an excellent laboratory for results in algebraic number theory. I will assume that you are familiar with basic algebraic number theory. Namely, the unique factorizatio...

متن کامل

Classes of Cyclotomic Fields

As one will see in n◦4, these two theorems are deduced from a structure theorem for a certain group of operators. This group is constructed thus: let Xn be the p-component of the ideal class group of Kn; it is a finite abelian p-group, of order p en , which is acted opon by the Galois group G(Kn/Q) and in particular its subgroup Γn = G(Kn/K0). In passing to the projective limit over n with the ...

متن کامل

Diophantine Equations in Cyclotomic Fields

where p is a given rational prime? It is almost trivial (from the theory of the Gaussian sum or otherwise) that a solution exists with g =p; it is less trivial that a solution also exists when g = p+p+l; but it is not asserted that solutions do not exist for other values of g. While we are unable to give anything like a complete answer to the problem proposed, we can prove something in this dir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2010

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2010.01.015